Search results

Search for "conversion reaction" in Full Text gives 15 result(s) in Beilstein Journal of Nanotechnology.

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Solution combustion synthesis of a nanometer-scale Co3O4 anode material for Li-ion batteries

  • Monika Michalska,
  • Huajun Xu,
  • Qingmin Shan,
  • Shiqiang Zhang,
  • Yohan Dall'Agnese,
  • Yu Gao,
  • Amrita Jain and
  • Marcin Krajewski

Beilstein J. Nanotechnol. 2021, 12, 424–431, doi:10.3762/bjnano.12.34

Graphical Abstract
  • sites). Crystalline Co3O4 exhibits the space group Fd3m (227) [5]. It also can reversibly store eight lithium ions according to the following conversion reaction: This redox reaction corresponds to a theoretical capacity of about 890 mAh·g−1 [1][2][3][4]. However, similarly to silicon and tin materials
  • mA·g−1 are shown in Figure 3a. During the first discharge, the profile consists of one long plateau at around 1.0 V, corresponding to the formation of metallic cobalt and Li2O according to the reversible conversion reaction stated before (Equation 1), and a gradual continuous voltage slope down to 0.01
  • [4][14][15][19][20][21][26][28][29][30][31][34][35][36][37][38][39][40][41]. The charge profiles are very similar and they exhibit a voltage plateau at about 2.0 V, which is associated with the re-conversion reaction and the resulting reconstruction of the cobalt oxide electrode. As mentioned before
PDF
Album
Supp Info
Full Research Paper
Published 10 May 2021

A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

  • Shahreen Binti Izwan Anthonysamy,
  • Syahidah Binti Afandi,
  • Mehrnoush Khavarian and
  • Abdul Rahman Bin Mohamed

Beilstein J. Nanotechnol. 2018, 9, 740–761, doi:10.3762/bjnano.9.68

Graphical Abstract
  • impregnated with several metal oxides (Ce, Ni, Fe, and V). The palm shell support was found to be capable of removing NO gas and further loading with metal oxides increased the conversion reaction due to the increased micropore volume of the palm shell AC. Yoon et al. [98] studied the effect of propellant
PDF
Review
Published 27 Feb 2018

Synthesis of metal-fluoride nanoparticles supported on thermally reduced graphite oxide

  • Alexa Schmitz,
  • Kai Schütte,
  • Vesko Ilievski,
  • Juri Barthel,
  • Laura Burk,
  • Rolf Mülhaupt,
  • Junpei Yue,
  • Bernd Smarsly and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2017, 8, 2474–2483, doi:10.3762/bjnano.8.247

Graphical Abstract
  • source for the formation of FeF3 NPs and their stabilization medium [84]. Iron fluorides were recognized as promising cathode materials for lithium-ion batteries due to the higher energy density compared to current cathode materials. Iron fluorides can undergo a conversion reaction delivering a
  • plateau, which is normally observed in pure FeF2 electrodes [88][89]. This feature corresponds to the conversion reaction of FeF2 to Fe0 and LiF. The plateau potential is around 1.3 V, far lower than the equilibrium potential of 2.6 V, which can be due to the restricted process kinetics. At the following
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2017

Systematic control of α-Fe2O3 crystal growth direction for improved electrochemical performance of lithium-ion battery anodes

  • Nan Shen,
  • Miriam Keppeler,
  • Barbara Stiaszny,
  • Holger Hain,
  • Filippo Maglia and
  • Madhavi Srinivasan

Beilstein J. Nanotechnol. 2017, 8, 2032–2044, doi:10.3762/bjnano.8.204

Graphical Abstract
  • the reduction to Fe0, associated with the conversion reaction leading to metallic particles finely dispersed in Li2O and electrolyte decomposition with solid–electrolyte interface (SEI) formation [39]. From the second cathodic cycle onwards, the peaks from 1.5 to 1.3 V and at 1.1 V do not appear and
  • -B1.5 are around 1400–1500 mAh g−1, and the capacity of the 1st delithiation cycle is about 1100 mAh g−1 with the respective coulombic efficiency of about 75%. The exact values are stated in Table 2. The initial capacity loss is possibly attributed to an incomplete conversion reaction and irreversible
  • shorter α-Fe2O3 nanorods (≈240 nm up to ≈280 nm) the capacity even reaches values beyond the theoretical value of 1007 mAh g−1 (based on the classical conversion reaction) over the monitored area. Such additional capacity occurrences and/or capacity increases in the reversible capacity regime were
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2017

Hierarchically structured nanoporous carbon tubes for high pressure carbon dioxide adsorption

  • Julia Patzsch,
  • Deepu J. Babu and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2017, 8, 1135–1144, doi:10.3762/bjnano.8.115

Graphical Abstract
  • . The formed carbon layer serves as the template and carbon source from which the silicon carbide is formed. It furthermore prevents particle agglomeration and reduces the loss of unstable SiO species which are formed during the conversion reaction. The conversion process thus represents a micro
PDF
Album
Full Research Paper
Published 24 May 2017

Carbon nanotube-wrapped Fe2O3 anode with improved performance for lithium-ion batteries

  • Guoliang Gao,
  • Yan Jin,
  • Qun Zeng,
  • Deyu Wang and
  • Cai Shen

Beilstein J. Nanotechnol. 2017, 8, 649–656, doi:10.3762/bjnano.8.69

Graphical Abstract
  • preparation methods. Yu et al. [26] successfully embedded Fe2O3 nanoparticles inside CNTs, which reduced the volume change of Fe2O3 nanoparticles during charge/discharge. A highly reversible conversion reaction between Fe0 and Fe3+ (Fe2O3) during lithiation/delithiation can also be observed. The synthesized
PDF
Album
Full Research Paper
Published 17 Mar 2017

Microwave synthesis of high-quality and uniform 4 nm ZnFe2O4 nanocrystals for application in energy storage and nanomagnetics

  • Christian Suchomski,
  • Ben Breitung,
  • Ralf Witte,
  • Michael Knapp,
  • Sondes Bauer,
  • Tilo Baumbach,
  • Christian Reitz and
  • Torsten Brezesinski

Beilstein J. Nanotechnol. 2016, 7, 1350–1360, doi:10.3762/bjnano.7.126

Graphical Abstract
  • to be capable of reacting electrochemically with Li to form Li2O and reduced metal phases [12][13][14]. However, bulk forms of these materials have not proven to be of interest for battery applications because of sluggish conversion reaction kinetics and fast capacity decay on cycling. Since small
  • the underlying mechanism is not fully understood yet. The strong peak (IV) at 0.83 V can be attributed to the main conversion reaction (second plateau in Figure 8a), which results in the formation of Zn(0), Fe(0) and Li2O. The broad peak (V) at 0.55 V has not been observed before and likely arises due
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2016

Improved lithium-ion battery anode capacity with a network of easily fabricated spindle-like carbon nanofibers

  • Mengting Liu,
  • Wenhe Xie,
  • Lili Gu,
  • Tianfeng Qin,
  • Xiaoyi Hou and
  • Deyan He

Beilstein J. Nanotechnol. 2016, 7, 1289–1295, doi:10.3762/bjnano.7.120

Graphical Abstract
  • then increasing [4][8][23][28]. For this given system, this should be mainly due to the activation of the material, the formation of a higher oxidation state of Mn and the reversibility improvement for the conversion reaction. Figure 3c shows the rate capacity tested by the stepwise increase in the
PDF
Album
Full Research Paper
Published 14 Sep 2016

Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

  • Luc Aymard,
  • Yassine Oumellal and
  • Jean-Pierre Bonnet

Beilstein J. Nanotechnol. 2015, 6, 1821–1839, doi:10.3762/bjnano.6.186

Graphical Abstract
  • electrode polarization (<0.2 V) for conversion materials. Conversion process reaction mechanisms with lithium are subsequently detailed for MgH2, TiH2, complex hydrides Mg2MHx and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to
  • technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on
  • which share the knowledge of both hydrogen-storage and lithium-anode communities. Keywords: conversion reaction; lithium-ion batteries; metal hydrides; Review Introduction To satisfy the continuously raising need for energy is now a key priority worldwide. The challenge is to obtain environmentally
PDF
Album
Review
Published 31 Aug 2015

The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes

  • Abdel-Aziz El Mel,
  • Ryusuke Nakamura and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 1348–1361, doi:10.3762/bjnano.6.139

Graphical Abstract
  • mechanism is the pioneering work of Yin et al. on the selenization of cobalt nanoparticles [7]. They have shown that the conversion reaction starts by the formation of a very thin cobalt selenide shell on the outer skin of the Co nanoparticle (Figure 3). As the reaction proceeds in time, the Co atoms tend
PDF
Album
Review
Published 18 Jun 2015

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

  • Philipp Adelhelm,
  • Pascal Hartmann,
  • Conrad L. Bender,
  • Martin Busche,
  • Christine Eufinger and
  • Juergen Janek

Beilstein J. Nanotechnol. 2015, 6, 1016–1055, doi:10.3762/bjnano.6.105

Graphical Abstract
PDF
Album
Review
Published 23 Apr 2015

Magnesiothermic conversion of the silica-mineralizing golden algae Mallomonas caudata and Synura petersenii to elemental silicon with high geometric precision

  • Janina Petrack,
  • Steffen Jost,
  • Jens Boenigk and
  • Matthias Epple

Beilstein J. Nanotechnol. 2014, 5, 554–560, doi:10.3762/bjnano.5.65

Graphical Abstract
  • and hierarchical forms [8][9][10][11][12]. These porous biominerals can serve as template for chemical conversion reactions, such as the calcium carbonate skeleton of sea urchins or the silica cases of diatoms [8][13]. In 2002, such a conversion reaction was first described in which biominerals were
  • structures of Mallomonas caudata were more damaged by the chemical conversion and handling (Figure 6C,D). The spikes were mostly broken. The shield of the golden algae was preserved and shows a defined pore structure like before the conversion reaction. The size of the mineral structures was well preserved
PDF
Album
Full Research Paper
Published 30 Apr 2014

Influence of particle size and fluorination ratio of CFx precursor compounds on the electrochemical performance of C–FeF2 nanocomposites for reversible lithium storage

  • Ben Breitung,
  • M. Anji Reddy,
  • Venkata Sai Kiran Chakravadhanula,
  • Michael Engel,
  • Christian Kübel,
  • Annie K. Powell,
  • Horst Hahn and
  • Maximilian Fichtner

Beilstein J. Nanotechnol. 2013, 4, 705–713, doi:10.3762/bjnano.4.80

Graphical Abstract
  • metal nanoparticles encapsulated in layers of graphitic carbon were formed. The agglomerates are interlinked by multiwall carbon nanotubes which are formed in situ [34][35][36]. Although these systems enhanced the cycling stability of the conversion reaction greatly because of the tight embedding of
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2013

A facile synthesis of a carbon-encapsulated Fe3O4 nanocomposite and its performance as anode in lithium-ion batteries

  • Raju Prakash,
  • Katharina Fanselau,
  • Shuhua Ren,
  • Tapan Kumar Mandal,
  • Christian Kübel,
  • Horst Hahn and
  • Maximilian Fichtner

Beilstein J. Nanotechnol. 2013, 4, 699–704, doi:10.3762/bjnano.4.79

Graphical Abstract
  • → LixFe3O4} [24]. The long plateau corresponds to the conversion reaction and the sloping part of the discharge curve can be assigned to the formation of the solid electrolyte interface (SEI) layer, as well as to the formation of a gel-like film through the reaction of Fe0 and electrolyte [7][8][9][10][11
  • cycles were about 72 and 63%, respectively. A similar trend has also been observed in other Fe3O4/C systems at high current rates [9][11], which could be ascribed to the slow conversion reaction kinetics. SEM images of the electrode cycled for 50 cycles at 93 mA·g−1 show a morphology similar to that of
PDF
Album
Supp Info
Letter
Published 30 Oct 2013
Other Beilstein-Institut Open Science Activities